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Why TDM in recommender systems 

for research? 

• Collaborative 

filtering vs 

content-based 

filtering

• In the scholarly 

databases, we 

have many 

documents but 

relatively few 

users => content-

based filtering

• Recommending 

entities
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The CORE recommender system

• CORE provides a 

content-based 

recommendation 

system for articles 

from across the 

global network of 

repositories. 

• Dataset: 

• 8.3 million full texts

• 79 million metadata 

records

• 3,658 data providers
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Recommendation as a service

• Recommender 

plugin for 

repositories

• Recommendations 

from the CORE API
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Recommendation as a service

• Recommender 

plugin for 

repositories

• Recommendations 

from the CORE API
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How does the CORE recommender 

system work? 

• Article-article recommender system. Processes: 1.Preprocessing prior to recsys: feature 

extraction/enrichment with e.g. document type, citation and citation proximity data, identifiers, etc. 

2.Similarity measure/ranking function

3.Post-filtering using record quality

4.Feedback (crowdsourcing a black list)

7







Combining features

• Evaluating different ranking functions (P,R,MAP, etc.):

• Weights for boosting

• Scaling function (e.g. exponential decay for recency)

• Offline ground truths:

• MAG citation assumption

• MAG co-citation assumption

• Learning to rank (haven’t done yet)

• Online A/B testing (haven’t done yet)
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Citation proximity analysis

• CPA extends the co-

citation assumption: 

“the more often two 

articles are co-cited in 

document, the more 

likely they are related” 

taking proximity into 

account. 

• Initial evaluation on 

350k papers and 1,200 

human relevance 

judgements shows a 

~25% increase in 
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Publications on this work

• Knoth, P., Anastasiou, L., Charalampous, A., Cancellieri, M., Pearce, S., Pontika, N. and Bayer, V. (2017) 

Towards effective research recommender systems for repo

sitories

, Open Repositories 2017, Brisbane, Australia

• Knoth, P. and Khadka, A. (2017) 

Can we do better than co-citations? Bringing Citation Pro

ximity Analysis from idea to practice in research article

s recommendation

, 2nd Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries, @SIGIR 2017, Tokyo, Japan

• Charalampous, A. and Knoth, P. (2017) 

Classifying document types to enhance search and recomme

ndations in digital libraries

, 21st International Conference on Theory and Practise of 10
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TDM in Research Evaluation
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• A class of research evaluation metrics that measures research value by analysing the 

full texts of publications. 

• Semantometrics aim to measure how far 

each scientific discovery takes us. 

• "Reading and judging a researcher's work is much more appropriate than relying on one number." – Leiden Manifesto
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TDM in citation analysis

• Current quantitative research evaluation methods are largely based on citation counts. 

• Journal Level – Journal Impact Factor (JIF)

• Author Level – h-index, g-index

• All citations are equal, but some are more equal than others … 

• None of these metrics account for citation type or sentiment. 

• Open Access means increased availability of full-text papers and articles for TDM analysis. 
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Detecting citation importance

Citations classified according to:

TYPE

•

Uses  method

•

Compares 

works

•

Continues 

work

•

…

Set of citing / cited paper 

Human Annotators

INFLUENCE

pairs

SENTIMENT

Author Overlap

Direct Citations

Abstract Similarity

…. 

Trained Classifier

Annotated ‘Gold Standard’ dataset

Classification Features
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Detecting citation importan

Citi c

ng / e

Cited Paper Pairs

INPUT: Paper  X

[1] Knoth, P., Anastasiou, L., Charalampous, A., Cancellieri, M., Pearce, S., Pontika, N., Bayer, V.: Towards effective research recommender systems for repositories. In: Proceedings of Open Repositories 2017 

Author et al. (2017)

[3] ………

Citation Extraction

Author et al. (2017)

[4] ………

 [n] ………

 Paper, Citation, Label

Author Overlap

 X, [1], incidental

Direct Citations

 X, [2], incidental

Abstract Similarity

 X, [3], influential

Classifier

 X, [4], incidental

…. 

 X, [n], ……. 

Feature Extraction
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Analysis of features

• Many features used for this task by researchers, examples:

• Total number of direct citations

• Number of direct citations per section

• Total number of indirect citations and number of indirect citations per section 

• Author overlap (Boolean)

• Citation is considered helpful (Boolean)

• Citation appears in table or caption

• 1 / Number of references

• Number of paper citations / all citations

• Similarity between abstracts

• PageRank

• Number of citing papers after transitive closure

• Field of cited paper. 

• Challenge: fairly small evaluation datasets 16







Contribution measure

Assumption: Added value of publication  p can be estimated based on the semantic distance from the publications cited by  p to publications citing  p. 



17







Contribution measure

• Based on semantic 

distance between citing 

and cited publications

• Cited publications – state-

of-the-art in the domain 

of the publication in 

question

• Citing publications – 

areas of application

• Tested 100 different 

distance combinations. 

• Detailed explanation and 

formula at 

semantometrics.org 
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True Impact Dataset (TID)

• Seminal and survey papers: two extreme cases of of paper types with different type of contribution:

• Seminal: massive contribution to knowledge generation

• Survey: educational value, but no contribution to knowledge generation

• Key idea: A good research evaluation metric should be able to distinguish between these two 

publication types
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True Impact Dataset (TID)

• Experimental results: 

• Citation counts (~60% accuracy, i.e. 10% over baseline)

• Readership (does not perform better than baseline)

• Both metrics only poorly distinguish between seminal and survey papers. 

• We managed to achieve better results with the contribution method on this task than with widely used citation counts. 
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CORE Research Analytics Dashboard

• A prototype service for 

universities helping 

them to track research 

impact. 

• TDM to slice and dice 

the data by 

department, funder 

and field

• Benchmarking metrics 

against others

• Integration of 

semantometrics in the 

future
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Publications on this work

• Herrmannova, D., Patton, R., Knoth, P. and Stahl, C. 

(2017) Citations and readership are poor indicators of research excellence: Introducing TrueID, a new dataset for validating research evaluation metrics, Workshop: Scholarly Web Mining (SWM) at Tenth ACM International Conference on Web Search and Data Mining (WSDM2017)

• Pride, D. and Knoth, P. (2017) 

Incidental or influential? A decade of using text-mining for citat

ion function classification

, 16th International Conference on Scientometrics & Informetrics, Wuhan, China

• Pride, D. and Knoth, P. (2017) 

Incidental or influential? - Challenges in automatically detectin

g citation importance using publication full texts

, 21st International Conference on Theory and Practise of Digital Libraries (TPDL), Thessaloniki, Greece

• Knoth, P. and Herrmannova, D. (2014) 

Towards Semantometrics: A New Semantic Similarity Based M 2

e 2

as

ure for Assessing a Research Publication's Contribution

, D-Lib Magazine, 20, 11/12, Corporation for National Research Initiatives







Contributions

• Two OpenMinTeD applications we have built in the scholarly communications use case. 

• TDM components are needed in both recommender systems and research evaluation. 

• Ongoing research in both areas

• OpenMinTeD simplifies building such applications. 
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