
Guillaume Filion
Group leader

genome architecture (CRG)

Toni Hermoso
Bioinformatician at

the core facility (CRG)

In the beginning were

computers and the Internet.

Open access in research

Open means

Transparent

Open means

Accessible

Open access publications

Berlin declaration on open access

The Internet has fundamentally changed

the practical and economic realities of

distributing scientific knowledge (…)

2000 2003 20152014

Mandatory open access for

H2020-funded research

2002

Budapest open access initiative

The business model

$

$

Articles

(Journals)

The readers pay

The author pays

?

Publishing today

source: http://book.openingscience.org/tools/open_access_state_of_the_art.html

http://book.openingscience.org/tools/open_access_state_of_the_art.html

Costs of open access (1)

Every day on PubMed

2600 new articles.

This is ~13 million € fees.

Who pays?

Costs of open access (2)

$

Predatory

journal

Benefits of open access (1)

Benefits of open access (2)

?

$
?

Why publish open

access?

Open access data

2002 2003

Costs of open data (1)

ENA is > 5000 TB

Cost much smaller

than publications

Who pays?

Costs of open data (2)

Confidential data

cannot be open

Opening personal

data may backfire

Benefits of open data (1)

Benefits of open data (2)

$

$

Fame / citations

Benefits of open data (3)

Quality
Safety
Cost

Open access code

1985 1991

Linux

Costs of open code

Who pays?

User support /

new features

Write portable

code

Non profit

Benefits of open code (1)

Benefits of open code (2)

$

$
You are the

product

Software is your

advertisement

The users pay

Benefits of open code (3)

Quality
Reproducibility

Benefits of open code (4)

Open access software and data

can boost your research.

But how to do it right?

Open Science.

Good practices in

Bioinformatics

Toni Hermoso Pulido (@)

Bioinformatics Core Facility

Centre for Genomic Regulation (BCN)

toniher

https://biocore.crg.eu

http://twitter.com/toniher
https://biocore.crg.eu/

Open Science

The six principles of Open Science

http://openscienceasap.org/open-science/

Document

Write it down or ...

it didn't happen!

Document: Why?

Organise ideas

Understanding code and steps in the

future for you and others

Fixing errors

Help in future publication

Document: Where?

File System (e.g. README or TODO files)

Control Version System

Git, SVN, etc.

Content Management System

Wiki CMS, Drupal, etc.

Document: How?

Plain text

Format

Unstructured

Free

Wikitext

Markdown

https://en.wikipedia.org/wiki/Markdown

Document: How?

Format

Structured

Config files

XML, JSON, INI, YAML

Templates (e.g. in wikis)

Database Management Systems

(Relation or NoSQL)

Tag and track

I never said so!

Tag and track: Why?

Convenient backup

Error tracking and reversion

Checking history

Allowing collaboration on different

time points

Publication of specific snapshots

Tag and track: Where?

Code, documentation:

Control Version System (Git, SVN, etc.)

Interfaces:

 (local installation)

Wiki CMS (e.g.)

Data, files

Plain Git (small files) or

Document Management Systems

Github

Gitlab

[Semantic] MediaWiki

Git with large files

https://github.com/
https://about.gitlab.com/
https://www.semantic-mediawiki.org/
https://stackoverflow.com/questions/17888604/git-with-large-files

Tag and track: Concepts

Revision, Version, Commit

Branch

Tag, Release

Fork, Pull request

Tag and track: Publish

Working and executable code

Docker & Singularity hubs

Identify Content & Code (DOI)

Figshare

Zenodo ()

Bio specific repositories

 (SRA)

 (Genome Expression Data)

ENA, EGA and others.

with Github

Sequence Read Archive

GEO Archive

Detail

https://guides.github.com/activities/citable-code/
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/ega/submission#which_archive

Reproduce

Run it again, Sam!

Reproduce: Why?

Nowadays not only textual statements but

also code and data

Peers and collaborators should be able to

reproduce by themselves

Check errors

Improve code, data

Test in different conditions

Standing on the shoulders of giants

https://en.wikipedia.org/wiki/Standing_on_the_shoulders_of_giants

Reproduce: How?

Code requirements, recipes

Scripts

Test frameworks

Package managers (e.g.)

Virtualisation

Hypervisor: VirtualBox, VMWare, etc.

Containers: ,

Conda

Jupyter

Docker Singularity

https://conda.io/
http://jupyter.org/
https://www.docker.com/
http://singularity.lbl.gov/

Reproduce: Note on python

 &

pip

pyenv pyenv-virtualenv
pyenv install x.y.z

pyenv virtualenv x.y.x myvenv

pip freeze > requirements.txt

pip install -r requirements.txt

https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv-virtualenv

Reproduce: Other languages

Perl:

PHP:

Java:

NodeJS:

etc.

perlbrew

phpbrew

jenv

nvm

https://perlbrew.pl/
http://phpbrew.github.io/phpbrew/
http://www.jenv.be/
https://github.com/creationix/nvm

Reproduce: Conda

Popular package manager

Takes care also of binaries, libraries

: specific Bioinformatics recipesBioconda

https://bioconda.github.io/

Reproduce: Jupyter

Former IPython Notebook

Combines in a single notebook

documentation (Markdown), comments and

executable code with its output

Underlying notebook format is a JSON text

file

Can be exported into PDF, HTML, etc.

Reproduce: Jupyter

Apart from Python (2 or 3), now also different

languages with Kernels:

R, Perl5, Perl6, Javascript, ...

Additional widgets (e.g. for charts)

Convenient for sharing code and training

more

Jupyter gallery in Github

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks

Reproduce: Docker

Allows shareable Linux systems that can be

run in any machine were Docker is installed

Build images with a script file (Dockerfile),

very similar to a Linux command-line script

You can reuse, adapt, extend

Don't reinvent the wheel

Repository of Docker images

https://hub.docker.com/

Reproduce: Docker

Microservices principle

1 Image -> n Containers -> n Services

n Services -> 1 full application

Example: BLAST Web application

Web server container

Database container

BLAST application running container

Making it work together:

system scripts

etc.

Docker compose

https://docs.docker.com/compose/

Reproduce: Singularity

Like Docker but more suitable for HPC

environments

No need of a Docker daemon running / less

problematic for security

Docker images convertible into Singularity ones

Conversion script

Singularity Repository

Recomendations to containerize your bioinformatics software

https://github.com/singularityware/docker2singularity
https://singularity-hub.org/
https://github.com/ypriverol/containers-rules-manuscript

Pipelines & Workflows

Guilty by association

Pipelines & Workflows: Why?

Write programs that do one thing and do it well.

Write programs to work together.

Write programs to handle text streams, because

that is a universal interface.

D. McIlroy, P.H.Salus

Unix Philosophy

https://en.wikipedia.org/wiki/Unix_philosophy

Pipelines & Workflows: How?

Traditionally from Shell script files

Frameworks or applications

Web-based

GUI and command-line

Command-line

Galaxy

Apache Taverna

Nextflow

Common Workflow Language

https://usegalaxy.org/
https://taverna.incubator.apache.org/
https://www.nextflow.io/
http://www.commonwl.org/

Pipelines and Workflows:

Nextflow

Concepts

Processes

Any pipeline or program (in any language)

In local disk or in containers (Singularity,

Docker)

Channels

FIFO queue

Normally files in a filesystem

Pipelines and Workflows:

Nextflow

Concepts

Config files

Different config files, calling one to another can

be created for adapting to different scenarios

Executors

Local machine

HPC cluster: SGE, Univa, SLURM, etc.

Cloud systems: Amazon Cloud, Apache Ignite

Questions?

Comments?

Diversity

There's more than

one way to do it

Criteria

Kind of tasks

Team profiles

Infrastructure and privacy

Previous knowledge and time

Criteria: Tasks

Data Analysis

Interface / Web programming

Teaching/Training

Environment (where can be acheived)

Interface/Web

HPC

etc.

Criteria: Profiles

Wet lab scientists

Statisticians, programmers

Citizens

Personal and working situations

Interns, PhD students, PostDocs

Technicians (full-time, temporary)

Project funding length

Criteria: Infrastructure,

privacy

Data transfer

Cluster vs Cloud

Sysadmin or support

Human or clinical data involved

Funding vs time

devops

https://en.wikipedia.org/wiki/DevOps

Criteria: Knowledge

Programming language(s)

Python, R, JavaScript, Java, Perl

Availability of libraries / reusing

Frameworks, platforms

Learning curve

Bus factor

https://en.wikipedia.org/wiki/Learning_curve
https://en.wikipedia.org/wiki/Bus_factor

