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Why TDM in recommender systems
for fg3aarseh?

COLLABORATIVE FILTERING CONTENT-BASED FILTERING
filtering vs oy bl
content-based = E

filtering |
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users => content- recommenti t il

based filtering
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The CORE recommender system

® CORE provides a
content-based
recommendation g @® ©
system for articles =~ e N v
from across the » A I
global networkof . A i —
repositories. L6

¢ Dataset:

Google g

e 8.3 million full texts
e 79 million metadata
records

3 658 data providers
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Recommendation as a service

UNIVERSITY OF
CAMBRIDGE

A& Apollo Home / School of the Physical Sciences / Department of Chemistry / Unilever Centre for Molecular Informatics / Panton Discussions / View Item

w Apollo

Advanced search

Open Content Mining

All of Apolio
Citation
Murray-Rust, P. (2012). Open Content Mining.

> Communities & Collections

> Authors
> Titles = Description
Conference for the Fellows of OpenForum Academy - 24th September 2012
> Keywords Brussels
> Type
This Collection R ] Abstract
VlerOpen Files Abstract— We present evidence that content-mining of scholarly articles is now
SRR i article text (PDF, 9Mb) technically feasible and highly valuable both. However researchers and
information technologist are blocked by legal and contractual barries from using
> Titles it and developing the methodologies. We review the problems and propose
Authors changes in legal policy which we have already submitted to the UK's Hargreaves
> Keywords Murray-Rust, Peter report on intellectual property reform. We put forward the fundamental rights of
> Type ! scholars and embed them in a manifesto: "The right to read is the right to
mine", "Users and providers should encourage machine processing, and "Facts
Publication Date don't belong to anyone".
i 2012-09-24
Keywords
5 i
MewHsage dtastics ISBN Open Content Mining, Index Terms—Open Knowledge, Content mining,
to be assigned Hargreaves process, Text mining, publishers, legal barriers
Language Identifiers
English This record'’s URL:

http://www.dspace.cam.ac.uk/handle/1810/243749
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Recommendation as a service

Type .
Conference Object Rights

Attribution 2.0 UK: England & Wales
Metadata Licence URL:

http://creativecommons.org/licenses/by/2.0/uk/
Show full item record

e Recommender
Recommended or similar items pI U g I r] fOI:
repositories
- | Effectively and Efficiently Mining Frequent Patterns from Dense Graph Streams on Disk o Re C O mm e N d a ti O N S

Provided by: Elsevier - Publisher Connector | Publisher: The Authors, Published by Elsevier B.V. | Year: 2014

By Braun Peter, Cameron Juan J., Cuzzocrea Alfredo, Jiang Fan, Leung Carson K. fro m t h e ‘ O R E A P I

The right to read is the right to mine: Text and data mining copyright exceptions introduced in the UK.

Provided by: LSE Research Online | Publisher: London School of Economics and Political Science | Year: '
2014

By Mounce Ross

p "
temerse Global boom, local i Miningr and i in Peru2007-2011
- ~ | Provided by: EconStor | Publisher: Washington, DC: Inter-American Development Bank (IDB) | Year: 2014
- s By Zambrano Omar, Robles Marcos, Laos Denisse

'_f:{-"": Environmental security, mining and good governance : mining regulation in the Kyrgyz region. A
e, review
G

Provided by: UEF Electronic Publications | Publisher: University of Eastern Finland

AT By HonkonenT

A Case Study of Data Analysis Process and Tools for a Consulting Company
Provided by: Aaltodoc Publication Archive | Year: 2012
By Gong Peng
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How does the CORE recommender

?
S-y&tll;ge[grtwg r'élc(o'mmender system. Processes:

1.Préprocessing prior to recsys: feature
extraction/enrichment with e.g. document type, citation
and citatjon proximity.data, identifiers, etc:

- 2.Similarity measure/ranklng function §

3. Post-filtering dsing record quality , 4

=4 Feedback (crowdsourcing a black list)

%

openMTN7=D




Combining features

e Evaluating different ranking functions (P,R,MAP, etc.):
e Weights for boosting
e Scaling function (e.g. exponential decay for recency)
e Offline ground truths: = .
"¢ MAG citation asstimption
" MAG co-citatioi assumption
e. | earning.to rank (haven’t done yet)
e Online A/B testing (haven't done yet)
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Citation proximity analysis

e (CPA extends the co-
Citation assumption:
“the more often two A

I
" . ] I
articles are co-cited in - N B
- Test Collection ! Extlrafcting ?“5“"“ : Citation Information
- - niormation i . .
d O C um e n t, th e m 0 r& ey E!%Jc:lh'r;re\:;is) '”f"cr;‘lzggg:es’: Normalisation

likely they are related” A

taking proximity into — -
~account. - Recommendations ———  Anayeis | €| <
e Initial evaluation on T -

350k papers and 1,200

.A ‘
I
I

co-cited documents

with positions and

human releva nce Proximity Function| meta-aoa
judgements shows a

open
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Publications on this work

e Knoth, P., Anastasiou, L., Charalampous, A., Cancellieri,
M., Pearce, S., Pontika, N. and Bayer, V. (2017)

, Open Repositories 2017, Brisbane, Australia
e Knoth, P. and Khadka;A: (2017)

, 2ndjoint Workshop on Bibliometric-enhanced
Information Retrieval and Natural Language Processing
for Digital Libraries, @SIGIR 2017, Tekyo, Japan

e Charalampous, A. and Knoth, P. (2017
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https://arxiv.org/abs/1705.00578
https://arxiv.org/abs/1705.00578
http://ceur-ws.org/Vol-1888/paper2.pdf
http://ceur-ws.org/Vol-1888/paper2.pdf
http://ceur-ws.org/Vol-1888/paper2.pdf
https://arxiv.org/abs/1707.04134
https://arxiv.org/abs/1707.04134

TDM in B@gg@rch Eval-uatlpn

s s ; v
o pe ,
“ L

openMTN7=D




® A class of research evaluation metrics that
measures research value by analysing the
full texts of publicatiens.

e Semantometrics aim to measure how far
each scientific discovery takes us.
* "Reading and judging a researcher's work is
much more appropriate than-relying on one
number." - Leiden Manifesto
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TDM in citation analysis

e Current quantitative research evaluation methods are
largely based on citation counts.
* Journal Level - Journal Impact Factor (JIF)
* Author Level - h-index, g-index

e All citations are equal but some are more equal than
others . |

e None of these metrics account for citation type or
sentiment.

® Open Access means increased availability of full-text
papers and articles for TDM analysis.
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Detecting citation importance
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Detecting citation importance.........

x -
INPUT: Paper X > = [1] Knoth, P., Anastasiou, L., Charalampous, A.,
— Cancellieri, M., Pearce, S., Pontika, N., Bayer, V.:
A N\ — Towards effective research recommender systems
4 > |= for repositories. In: Proceedings of Open
COEEEEE—— P Repositories 2017
_ — =B
—_—  » |=
aE—— —
, Author etal-(2017) .
— T |
e
- = ‘ ] oo oo ‘
g . [
: : A g =
" b
. 'r-l -

. (Paper, Citation, Lab‘e) f . \

X, [1], incidental _ Direct Citations
X, [2], incidental -

s Abstract Similarity
X, [3], influential o

X, [4], incidental Classifier
\X, ... N \ et Feature Extraction

L

openMTN7=D




Analysis of features

e Many features used for this task by researchers,

examples

Total number of direct citations
Number of direct citations per section
Total number of |nd|rect C|tat|ons and number of indirect citations per
section -
Author overlap (Boolean) -
Citation is considered helpful (Boolean)
Citation appears in table or caption
1 / Number of references
“Number of paper citations / all citations
Similarity between abstracts
PageRank
Number of citing papers after transitive closure

Field of cited paper

* Challenge: fairly small evaluation datasets
openMITN7=D




Contribution measure

Assumption: Added value of publication p can be
estimated based on the semantic distance from the
publications cited by p to publications citing p.

-

' @iéj\@\@&
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Contribution measure

e Based on semantic

distance between citing ,

and cited publications S

* Cited'publications - state- :
of-the-art in the-demtain e
of the publicationih ' “
question & )

¢ Citing publications -
areas of application

e Tested 100 different
distance combinations.
* Detailed explanation and

openm'rlqliu'l a t




True Impact Dataset (TID)

e Seminal and survey papers: two extreme cases of
of paper types with different type of contribution:
*“ Seminal: massive contribution to knowledge

generation -

e Survey:reducationadvalue, but no contribution to
~_knowledge generation :

* Key idea: A good research evaluation metric should
be able to distinguish between these two
publication types

openMTN7=D




True Impact Dataset (TID)

e Experimental results:

» *Citation counts (~60% accuracy, i.e. 10% over
“baseline) -

* Readership (does not perform better than baseline)
* Both metrics,only.poeorly distinguish between seminal
~and survey paperss : v

* We managedto achieve better results with the

. contribution method on this task than with widely
used citation counts.
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CORE Research Analytlcs Dashboard

e A prototype service for
universities helping
them to track research ot e
impact. - i

e. TDM to slice and dice =+ .

the data by P 7\
department funder

‘.1 ]
2
-
: 500,000
S
8
G I l l

G i “otin.
against others S1iTIRiiildilnl] .

® |ntegration of

semantometrics in the
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Publications on this work

¢ Herrmannova, D., Patton, R., Knoth, P. and Stahl, C.
(2017) Citations and readership are poor indicators of
research excellence: Introducing TruelD, a new dataset
for validating research evaluation metrics, Workshop:
Scholarly Web Mining (SWM) at Tenth ACM International
Conference on Web Search and Data Mining (WSDM2017)

e Pride, D. and Knoth,-P.(2017)

~16th International Conference on Scientometrics &
Informetrics, Wuhan, China
e Pride, D. and Knoth, P. (2017)

, 21st International Conference on Theory and Practise of

Digital Libraries (TPDL), Thessaloniki, Greece
srKnohklhyPoand Herrmannova, D. (2014)

Towards Semantometrics: A New Semantic Similarit



http://oro.open.ac.uk/51751/1/Pride_Knoth_A_decade_of_using_text_mining_for_citation_function_classification.pdf
http://oro.open.ac.uk/51751/1/Pride_Knoth_A_decade_of_using_text_mining_for_citation_function_classification.pdf
https://arxiv.org/abs/1707.04207
https://arxiv.org/abs/1707.04207
http://www.dlib.org/dlib/november14/knoth/11knoth.html
http://www.dlib.org/dlib/november14/knoth/11knoth.html

Contributions

* Two OpenMinTeD applications we have built in the
scholarly communications use case.

e TDM components are needed in both recommender
systems.and research evaluation.

* Ongoing research- in-both areas

* OpenMinTeD S|mpl|ﬁes bU|Id|ng such applications.
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