
David Pride and Petr Knoth
Knowledge Media institute, The Open University, UK

Incidental or influential: Challenges in automatic 
detection of citation importance





Introduction

• Current quantitative research evaluation methods are largely 
based on citation counts.

: Journal Level – Journal Impact Factor (JIF)
: Author Level – h-index, g-index

• None of these metrics account for citation type or sentiment.

• Open Access means increased availability of full-text papers and 
articles for analysis. 



Citation Context Analysis

• Discover where the citation occurs in 
the full text of a document.

• Identifies the type, sentiment polarity 
or influence of the citation.   

Author et al. (2017)



Why do we cite something?
• Giving credit for related work
• Identifying methodology / equipment
• Providing background reading 
• Correcting one’s own work 
• Correcting the work of others 
• Criticizing previous work 
• Substantiating claims
• Disputing priority claims of others 

    – negative claims

• Providing leads to poorly disseminated, poorly indexed, 

    or uncited work

• Authenticating data and classes of fact-physical constants.

• Identifying original publications in which an idea or concept 

    was discussed.

• Identifying original publications or other work describing an 

    eponymic concept or term

• Disclaiming work or ideas of others 

    – negative homage



Methodology

• Review of previous citation classification studies (Zhu, 2015; 
Valenzuela, 2015; Teufel, 2006). 

• Comparative analysis of two of these studies (Zhu, 2015; 
Valenzuela, 2015)

• Goals:
• Understand features and datasets used.
• Identify which features perform best at identifying citation 

influence.
• Investigate reproducibility of these studies.
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Author et al. (2017)
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Ground Truth Dataset

• 2 Annotators – binary influential / 
important judgements.
• 465 Cited / Citing Pairs
•  ~15% of all citations are influential / 

important
•  ~4% of all citations are negative
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Selection of classification features

• F1 Total number of direct citations
• F2 Number of direct citations per section
• F3 Total number of indirect citations and number of     

  ……indirect citations per section 
• F4 Author overlap (Boolean)
• F5 Citation is considered helpful (Boolean)
• F6 Citation appears in table or caption
• F7 1 / Number of references
• F8 Number of paper citations / all citations
• F9 Similarity between abstracts
• F10 PageRank
• F11 Number of citing papers after transitive closure
• F12 Field of cited paper. 

Valenzuela et al. Features
1.1 countsInPaper_whole 
1.2 countsInPaper_secNum 
1.3 countsInPaper_related 
1.4 countsInPaper_intro 
1.5 countsInPaper_core 
2.1 sim_titleTitle 
2.2 sim_titleCore
2.3 sim_titleIntro
2.4 sim_titleConcl
2.5 sim_titleAbstr
2.6 sim_contextTitle
2.7 sim_contextIntro
2.8 sim_contextConcl
2.9 sim_contextAbstr
3.1 contextMeta_authorMentioned 
3.2 contextMeta_appearAlone 
3.3 contextMeta_appearFirst 
3.4 contextLex_relevant 
3.5 contextLex_recent
3.6 contextLex_extreme
3.7 contextLex_comparative
3.8 contextLexOsg_wnPotency 
….
5.1 aux_citeCount
5.2 aux_selfCite
5.3 aux_yearDiff 

Zhu et al.  Features
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Zhu et al.  Features

Fewer than half of these features 
performed better than the 
baseline.
(Valenzuela et al. 2015)
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Fewer than half of these features 
performed better than the 
baseline.
(Valenzuela et al. 2015)

Of 40 features, a combination of 
just FOUR features provided the 
best performance. 
(Zhu et al. 2015)



Irreproducible features

F5 - Citation is considered helpful (Boolean)

How is ‘considered helpful’ defined? No cue phrases provided.

F10 – PageRank

Based on what corpora – again, details not provided. 

F12 – Field of cited paper. 

This feature is not complete. 



Reproducible features

F1 – Number of Direct Citations / ‘countsinPaper_Whole’ 

F4 – Author Overlap  /  auxSelfCite

F10 – Abstract Similarity  



Evaluation

• Valenzuela measures 
Precision @ R 0.90
• Masks some predictive 

ability of features.
• Zhu measure in terms of 

Pearson r correlation.
• Our study shows results 

in both formats.
• Random Forest Classifier 

= best results
Recall

Precision

P/R curve for Abstract Similarity 

Classifier initially performs well

After identifying ~ 20% the classifier then struggles



Results of experiments 

• Features tested using Valenzuela dataset
• Results measured in terms of P/R and Pearson r
• Difference in Author Overlap – different datasets
• Abstract Similarity shows highest r value of tested features
f



The challenges 

• Lack of large ‘ground truth’ dataset for training classifiers.

• Complex or irreproducible features. 

• PDF Extraction issues. 



Conclusions

• Lack of massive scale gold-standard dataset.
• Raises questions regarding publication of datasets as well as results.
• Abstract Similarity shown to be better predictor of citation influence 

than demonstrated by earlier studies.
• Serious concerns with reproducibility of previously tested features.
• Significant variances in quality of PDF extraction tools. 



Thank you for 
listening 

For full details of the work being done by CORE and KMi visit: 

http://www.core.ac.uk

http://www.kmi.open.ac.uk

petr.knoth@open.ac.uk david.pride@open.ac.uk 
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Citation Classification Schemes
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