Tutorials on Data Management

Lesson 4: Data Collection Entry and Manipulation

C image by Cobalt123 on Flic

Lesson Topics

- Best Practices for Creating Data Files
- Data Entry Options
- Data Manipulation Options

Learning Objectives

- Recognize inconsistencies that can make a dataset difficult to understand and/or manipulate
- Describe characteristics of stable data formats and list reasons for using these formats
- Identify data entry tools
- Identify validation measures that can be performed as data is entered
- Describe the basic components of a relational database

The Data Life Cycle

Goals of Data Entry

- Create data sets that are:
 - Valid
 - Organized to support ease of use

Example: Poor Data Entry

1 0	A													>
1 0		B	С _	n	E	F	G	Н		J	K	L	M	N T
				Species	Weight	Acult		Rodent Trapping	a 3/15/2010					
2 D	DeepWell	2/13/2010	1	DIPO	12.1	j		Site	Plot	Adult	RodentSp			
	Deep Wel	Feb-10		Pero	13.22	j 🔤		DW	1	у	Pero	12		
		2/13/2010	la	pero	16	N		RS	2		PERO	escaped <15		
	ioSlado	"	1+	CleGap		got away		RS	3	п	Clegap	91		
6				Mean1	15.06									
7														
8														
9														
10														
11														
	Rodent Tra		MJK & ALN											
13 S			Adult	Species	grams	Ccmments	•	Inconsist	ency h	etwee	n data (collection	events	
	leep well		У	woodrat	1.1		-		-				CVCIILS	
_	iosalado	2	2	PERO	24.5		_	Location	n of Da	te info	ormatio	n		
_	iosalado	3	у	Clegap	91		_	Inconsis	tont D	ata for	mat			
17							_				mat			
18							_	Column	names	;				
19							_	Ordered	(a a lum					
()	▶) N \Shee	et1/						Order of	colun	ins				

Example: Poor Data Entry

1	lata.xls													_ 🗆 ×
	0	В	C	D	E	F	G	Н		J	K	L	М	N 🔺
1	Site	Date	Plot	Species	Weight	Acult		Rodent Trapping	g 3/15/2010					
2	DeepWell	2/13/2010	1	DIPO	12.1	j		Site	Plot	Adult	Rodent	o Weight		
3	Deep Well	Feb-10	2	Pero	13.22	j		DW	1	у	Pero	12		
4	rioSalado	2/13/2010	1a	pero	16	N		RS	2	j	PERO	escaped <15		
5	rioSlado	1	1⁺	CleGap	18.92	gut away		RS	3	ri -	Clegap	91		
6		1		Mean1	15.06									
7														
8														
9														
10							•	Inconsist	tencv b	etwee	n data	collection	event	s
11							_		-					
12		ping	MJK & ALN	10-Apr-10			_			-	• • •	oitalization	, space	s in
		Plot	Adult	Species	grams	Ccmments	_	site nar	nes—h	ard to	filter			
	deep well	1	у	woodrat	13		_		6			6	Lada I	
	riosalado		у	PERO	24.5		_	 Codes L 	isea toi	r site n	ames	for some d	lata, pl	Ιτ
16	riosalado	3	у	Clegap	91		_	spelled	out for	r other	S			
17		1					_	•						-
18							_	• Mean1	value I	s in w	eignt d	oiumn		
19							_	• Text an	d numl	bers in	same	column -	what is	the
	→ → \Shee	et 1 /	1											
,								mean o	π 1Ζ, Θ	scape	u < 12	", and 91?		

📲 d	ata.xls													_ 🗆 🗡			
	A	В	C	D	E	F	G	Н	<u> </u>	J	K	L	M	N 🔺			
	Site		Plot	Species		Acult			apping 3/15/201								
	DeepWell	2/13/2010			12.1		Sit		Plot		RodentSp						
	Deep Well	Feb-10		2 Pero	13.22		DV				Pero	12					
	rioSalado	2/13/2010	1a	pero	16		RS			- 0	PERO	escaped <15					
_	rioSlado	"	1+	CleGap		gul away	RS	;		3 ri	Clegap	91					
6				Mean1	15.06							-					
7 8								- 📳	5E¥_SmallMa	ammalData	v.5.25.2	2010.xls					>
9									A	В	С	D	E	F	G	Н	Ē
10								1	Date	Site	Plot	Species	Weight	Adult	Comments		
11								2	2/5/2010	Deep Wel	1	1 DIPO	13.2	V V			
	Rodent Tra		MJK & ALN					- 3		Deep Wel		1 CLEGAP	11.6				
		Plot	Adult	Species	grams	Ccmments											
	deep well		у	woodrat	13			4		Rio Salad		1 DIPO	14.2				
	riosalado	2		PERO	24.5			5	2/5/2010	Rio Salad	0	2 PERO	10.1	у			
	riosalado	3	у	Clegap	91			6	3/15/2010	Deep Wel	1	1 DIPO	15.2	! γ	plot burned		
17 18								- 7	3/15/2010	Deep Wel	I	2 DIPO	21.7	Ý	pregnant		
19								8	3/15/2010	Rio Salad	0	1 CLEGAP	16.2	! i			
20	<u> </u>							- 9						1			
4 4	→ N\She	et1/						- 10									+
								11									+
			-					40									+
	ി	umn	sofo	fata	are d	onsi	stent:	12									
		unni	5010	Jata		.01131	JULIII.	14	🔹 🕨 🕨 🔪 Sma	allMammal	Trapping	/ Sheet3 /		14			

- Columns of uata are consistent. only numbers, dates, or text
- Consistent Names, Codes, Formats (date) used in each column
- Data are all in one table, which is much easier for a statistical program to work with than multiple small tables which each require human intervention

- Create descriptive column names without spaces or special characters
 - Soil T30 [] Soil_Temp_30cm
 - Species-Code [] Species_Code (avoid using -,+,*,^ in column names.
 Some software may interpret these symbols as an operator)
- Use a descriptive file name. For instance, a file named SEV_SmallMammalData_v.5.25.2010.csv indicates the project the data is associated with (SEV), the theme of the data (SmallMammalData) and also when this version of the data was created (v.5.25.2010). This name is much more helpful than a file named mydata.xls.

- Missing data
 - Preferably leave field empty (NULL = no value)
 - In numeric fields, use a distinct value such as 9999 to indicate a missing value
 - In text fields, use NA ("Not Applicable" or "Not Available")
 - Use Data flags in a separate column to qualify missing value

Date	Time	NO3_N_Conc	NO3_N_Conc_Flag	
20081011	1300	0.013		M1 = missing; no sample
20081011	1330	0.016		 Collected E1 = estimated from
20081011	1400		M1	grab sample
20081011	1430	0.018		
20081011	1500	0.001	E1	
Data Entry a	nd Manipu	ulation		

• Enter complete lines of data

1 5	ev_anpp.xls												_								
	A	В	C	D	E	F	G	H		J	K	L	M	N 🔺							
	year Sit 1999 C		Treat U	Web	Plot 1 E	Quad	Species 1 CHSE7		spwt O	fallwt 0 0.05	spnpp 0	allnpp 0.05	anpp 0.05								
2	1999 C		0				CHSES			0.05	0	0.05	0.05	_							
4							LEFE	0.3			0	0.04	0.04	_							
5							THAC		0 0.4		0.45	5.66	6.11								
6	1999 C		U		1 E		2 DAPU7	0.0	1 0.2	5 0.97	0.24	0.72	0.96								
7							LEFE	3.2			0	10.49	10.49								
8							THAC		0 1.2		1.21	16.08	17.3								
9	1999 C		U		1 E		3 CHSE7			0.01	0	0.01	0.01								
10							CHSES		-	0.01	0	0.01	0.01								
11 12						_	THAC	1.3	2 0.0 0 0.4		0.47	0.64 3.96	4,43	_							
13	1999 C		U		1 E		4 CH		0 0.4	4.43	0.47	3.90	4.4J								_
14	1000 0		·				DA			-								14			_
15							LE	A	B	C	D	E	F	G	Н		J	K	L	M	1
16								year	Site	Treat	Web	Plot	Quad	Species		-				anpp	
17	1999 C		U		1 N		1 AR 2	1999	С	U		1 N		1 ARIST	0.6	2.75	4.27	2.16	1.52	3.67	
18							AR 3	4000				4 5		ARLUL2	0	0	0.95	0	0.95	0.95	
19 20							CH 4 DA 5	1999	-	U		1 E		1 CHSE7	0	0	0.05	0	0.05	0.05	
20							9	1999	C	U		1 E		3 CHSE7	0	0	0.01	0	0.01	0.01	
22	1999 C		U		1 N		GL 6 2 AR 7							CHSES	0	0	0.04	0	0.04	0.04	
								4000						CHSES	0	0	0.01	0	0.01	0.01	
					\wedge		8	1999	C	U		1 E		4 CHSES	0	0	0.28		0.28	0.28	
							9	1000			_			CHSES	0	0	0.02		0.02	0.02	
5	rtina	n	h				10	1999	C	U	_	1 E		2 DAPU7	0.01	0.25	0.97	0.24	0.72	0.96	
U	rting	a	1				11				_			DAPU7	0.05	0.49	0.84	0.44	0.35	0.79	
			• • •				12							DAPU7	0.06	0.88	2.05		1.18	1.99	
rf	el file	יע) מ	ith				13							GUSA2	0	0.9	0		0	0.9	
							14							LEFE	0.37	0.17	0		0	0	
	.		:-		•		15							LEFE	3.29	2.01	12.5		10.49	10.49	
ID	IV CE	HIS	IS	K	/		16							LEFE	1.32	0.07	0.7	0	0.64	0.64	
	-, -, -,					\sim	17							LEFE	2.9	0.4	0.12		0	0	
•	ty ce : a ge		h		-	- 1	18							THAC	0	0.45	6.11	0.45	5.66	6.11	
^†	. a y		J				19							THAC	0	1.21	17.3		16.08	17.3	
01							20							THAC	0	0.47	4.43		3.96	4.43	
01	Ŭ																				
01	idea	1					21							THAC	0	1.5	17.26	1.5	15.76	17.26	

- For the long term, store data in a consistent format that can be read well in to the future and that can be used by any application now or in the future
- Appropriate file types include:
 - Non-proprietary: Open, documented standard
 - Common usage by research community: Standard representation (ASCII, Unicode)
 - Unencrypted
 - Uncompressed
- ASCII formatted files will be readable into the future
 - Use ASCII (comma-separated) for tabular data

References

 Best Practices for Preparing Environmental Data Sets to Share and Archive. September 2010. Les A. Hook, Suresh K. Santhana Vannan, Tammy W. Beaty, Robert B. Cook, and Bruce E. Wilson.

http://daac.ornl.gov/PI/BestPractices-2010.pdf

Data Entry Tools

- Googledocs Forms
- Spreadsheets

	ogleshare	n	osaved on Mar 21, 2	2008 8:05:38 PM GMT	+01:00			phili
File	• Edit S	Sort Fo	rmulas Revis	sions				
B24	= samba							Range names +
		в	с	D	E	F	G	н
1	Country name	Country code	Googleshare	PageCount for country name	PageCount for country name * keyword			
2	China	CN	0.09903181185	723000000	716000			
3	India	IN	0.14123006833	439000000	620000			
4	USA.	US	0.06111111111	1170000000	715000	- F	5 8	av.
5	Indonesia	ID	0.18514851485	303000000	561000	-2-1-	2000	Some and
6	Brazil	BR	0.234666666666	225000000	528000		1 1	and the second
7	Pakistan	PK	0.156875	160000000	251000		1 1	MARKE ~~
8	Bangladesh	BD	0.21140939597	89400000	189000		~ R	Mark Son
9	Nigeria	NG	0.26763485477	96400000	258000			OTHE MA
10	Russia	RU	0.27291666666	192000000	524000		7520 80	AG S
11	Japan	JP	0.10471124620	658000000	689000			R.LY V
12	Germany	DE	0.10426305400	537000000	560000			821
13	UK	UK	0.05025806451	155000000	779000			132 0
14	France	FR	0.07201754385	1140000000	821000		17	
15	Canada	CA	0.06029411764	1020000000	615000		×2	
16	Korea	KR	0.23644067798	236000000	558000	0.05		0.27
17	Poland	PL	0.15324074074	216000000		0.05		0.27
18	Hungary	HU	0.15075757575	132000000	199000			
19	Iraq	IQ.	0.26802325581	172000000	461000			
20	Greece	GR	0.20616438358	146000000	301000			
21	Mexico	MX	0.09625748502	668000000	643000			
22	Libya	LY	0.20230607968	47700000	96500			
23								
24	Keyword:	samba						

Googledocs Forms

Add item - Them	e: Plain	Email this form	See responses 👻	More actions 👻	Sav
NPP Data Entr					
You can include any	text or info that will help people fill this out.				
Date * Enter the date data v	were collected in format YYY-MM-DD				
Question Title	Site			261	
Help Text					
Question Type	Choose from a list 💌			_	
1.	Deep Well			×	
2.	Rio Salado			×	
3.	Cerro Montosa Click to add option			×	
Done Make 1	his a required question				
Plot *	nation, which will be one of the four cardinal dire	actions			
	naton, which will be one of the loci cardinal dife	5010113			
□ s					

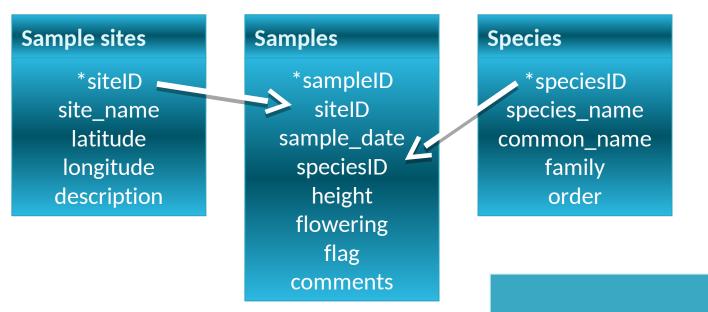
Q	iGoogle ×	🕥 Data Manageme		Eptry X Coor	gle Docs - Ho 🗙 🇊 NPP D		_ 0 X
_			<u>\</u>	<u> </u>	/sQQJwafO6o7aXfg&hl=e		ন্দ্র ২
						Kristin Vand	
	ail Calendar Docum						lerbilt - 🛱
G	oogle docs 🕾 N	IPP Data Entry F	orm 🔒 Private t	o only me Up	pdated seconds ago by nm	ntraveler Saved	🗟 Share 🔻
File	Edit View Insert	Format Form (2	2) Tools Help		nmt	raveler and 2 others	are view… ×
a	🗠 🛥 🙉 🕶 📥 🛙 \$	% 123 ▼ 10pt ▼	B Abc A -	∎ - □ - ≡ - [ΞΞΣτιμ		
		in the first					
Forr	nula:						all formulas
1	A Timestamp	B Date	C Site	D Plot	E Species_Code	F Height	G
2	3/14/2011 12:37:22	1/13/2010		S	BOGR2	13.1	
3		2/13/2010		S	HODI	13.2	
4							
5 6							
7							
8							
9							
10 11							
12							
13							
14 15							
15							
17							
18							
19 20							
20 21							
22							
23							
24 25							
26							
	≺ Sheet1						•
	Sneeti						
	DRAFT DataONE Datap	pt 🔹 🎦 DRAF	T DataONE Datap	pt 🔹		💽 Show all dow	inloads 🗙

Data Entry Tools: Excel

	A	B	}	С	D		E	F	G	H	
	Date	Site		Plot	Species	He	ight				
	1/12/2011	Deep We	ell	N	BOGR2	-	12.00				
					BOGR2						
					BOHI2 BOIN						
					BOPU						
					BOSA						
					BOSP						
					BRAN BRBA2	Ţ		Data Validati	0.0		
					DIVDHZ						
ī								Settings I	input Message	Error Alert	
								Validation crit	teria ———		
2								<u>A</u> llow:		-	_
3								List	•		Ignore <u>b</u> lank
ł								Any value Whole nu	e ımber		In-cell dropdown
5								Decimal List			
4	→ → \She	et1 / Sher	et2 / Sh	eet3 /				Data			<u>v</u>
		Let A Dries	<u>oce y 54</u>	,				Text leng	jth		22
								Custom		1	
									these changes to	all other cells wit	h the same settings

Excel: Data Validation

📓 datavalidation.xls								
Microsoft Excel	× c	D	E	F	G	Н		
You have entered an illega	t	Species BOGR2	Height 20					
(<u>R</u> etry Cancel	_							
6								
7		Dat	a Validation					×
8								
9		Į.S	ettings Inpu	ut Message	Error Alert			
10		v	alidation criteri	a				
11			<u>A</u> llow:					
12					-			
13			Decimal		~	I ⊻ Igno	ore <u>b</u> lank	
14			<u>D</u> ata:					
15			between		-			
16			Minimum:					
18			11			<u>.</u>		
19			· ·					
20			Ma <u>x</u> imum:					
21			15			.		
22			_					
22		+	Apply the	ese changes t	o all other cel	ls with the sa	ame settings	
			<u>⊂</u> lear All			0	K C	Cancel


Spreadsheet vs. Relational Database

- Great for charts, graphs, calculations
- Flexible about cell content type—cells in same column can contain numbers or text
- Lack record integrity--can sort a column independently of all others)
- Easy to use but harder to maintain as complexity and size of data grows

- Easy to query to select portions of data
- Data fields are typed For example, only integers are allowed in integer fields
- Columns cannot be sorted independently of each other
- Steeper learning curve than a spreadsheet

What is a relational database?

- A set of tables
- Relationships
- A command language

Database Features: Explicit control over data types

Date	Site	Height	Flowering
<dates only=""></dates>	<text only=""></text>	< real numbers only>	< 'y' and 'n' only>
Advantages • quality co • performa	ontrol		

Relationships are defined between tables

Date	Site	Species	Flowering?		Site	Latitude	Longitude
	**********			****			
2/13/2010	A	BOGR2	У	1999 - 1997 - 19	A	34.1	-109.3
2/13/2010	В	HODR	У		B	35.2	-108.6
4/15/2010	В	BOER4	У		С	32.6	-107.5
4/15/2010	С	PLJA	n				
	·						

Mix and
Match
data on
the fly

Date	Site	Species	Flowering?	Latitude	Longitude
2/13/2010	А	BOGR2	У	34.1	-109.3
2/13/2010	В	HODR	У	35.2	-108.6
4/15/2010	В	BOER4	У	35.2	-108.6
4/15/2010	С	PLJA	n	32.6	-107.5

Powerful Command Language called Structured Query Language (SQL)

This table is called SoilTemp

Date	Plot	Treatment	SensorDepth	Soil_Temperature
2010-02-01	С	R	30	12.8
2010-02-01	В	С	10	13.2
2010-02-02	С	R	0	6.3
2010-02-02	А	Ν	0	15.1

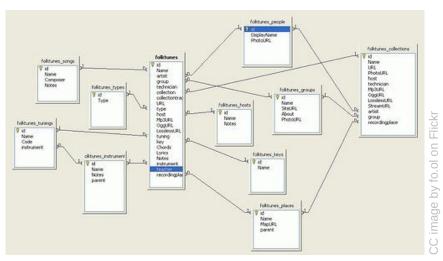
SQL examples: Select Date, Plot, Treatment, SensorDepth, Soil_Temperature from SoilTemp where Date = '2010-02-01'

Date	Plot	Treatment	SensorDepth	Soil_Temperature
2010-02-01	С	R	30	12.8
2010-02-01	В	С	10	13.2

Select * from SoilTemp where Treatment='N' and SensorDepth='0'

Date	Plot	Treatment	SensorDepth	Soil_Temperature
2010-02-02	А	Ν	0	15.1

Data Entry with a Database


 Forms can be created that make entering data in to a relational database as easy as entering it in to Excel. The screenshot below shows embedded forms that were quickly generated in MS Access for adding data to three tables in a database of plant cover measurements

Microsoft /	Access - [Location]	
	t <u>V</u> iew Insert Format <u>R</u> ecords <u>I</u> ools <u>W</u> indow <u>H</u> elp Type a question	
	- MS Sans Serif - 8 - B I U 📰 🗃 🂁 - 🚣 - 🖉 - 🦷 - 📼	
- 🔜 🖷	8 ● 6 ♥ 8 ₽ € ♡ % 2 3 1 1 1 1 1 2 .	
► Site_ID	(AutoNumber)	
Site		
Web	0	
Plot Quad		
visit		
Visit_ID	D (AutoNumber)	
crew		
site_id	0	
date		
	observation	
	Visit_id	
	species	
	cover 0 height 0	
	observation	
	phenology	
	comments	
	observation_id (AutoNumber)	
	Record: I I I I I I I I I I I I I I I I I I I	
Record:		
Record: 14	▲ 1 ▶ ▶ ▶ ▶ of 1	F
Form View		
/lanini	ulation	

Conclusion

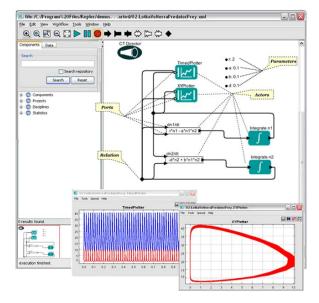
- Be aware of Best Practices when designing data file structures
- Choose a data entry method that allows some validation of data as it is entered
- Consider investing time in learning how to use a database if datasets are large or complex

If you want to try a database:

- Consider trying one of these:
 - Personal, single-user databases can be developed in MS Access, which is stored as a file on the user's computer. MS Access comes with easy GUI tools to create databases, run queries, and write reports.
 - A more robust database that is free, accommodates multiple users and will run on Windows or Linux is MySQL. GUI interfaces for MySQL include phpMyadmin (free) and Navicat (inexpensive).

To learn more about designing a relational database:

 Database Design for Mere Mortals: A Hands-On Guide to Relational Database Design (2nd Edition) by Michael J. Hernandez. Addison-Wesley. 2003.


Data Manipulation

- Useful for analyzing, subsetting and transforming data
- Can be used to quality assure data
- Options include SAS, SPSS, R, and Matlab
 - Not Free
 - SAS: Has outstanding support
 - SPSS: Has a user-friendly GUI
 - Matlab: Analysis and Visualization platform that has "toolboxes" available for different disciplines, such as modeling or genomic analyses

R

- Free (http://www.r-project.org/index.html)
- Produces publication quality graphics
- Lots of forums from which to get help
- Software (such as Kepler for developing workflows) will integrate analytical components written in R

The full slide deck may be downloaded from: http://www.dataone.org/education-modules

Suggested citation:

DataONE Education Module: Data Entry and Manipulation. DataONE. Retrieved Nov12, 2012. From http://www.dataone.org/sites/all/documents/L04_DataEntryM anipulation.pptx

Copyright license information:

No rights reserved; you may enhance and reuse for your own purposes. We do ask that you provide appropriate citation and attribution to DataONE.

